Author Affiliations
Abstract
A simple model is developed to study the laser cooling of solids. The condition of laser cooling of a solid is developed. By using some parameters of the Yb3+ ion, which is most widely used in laser cooling, we then calculate the cooling power and the cooling efficiency. In order to make a more precise analysis, the effect of fluorescent reabsorption, which is unavoidable in the cooling process, is discussed using the random walk model. Taking Tm3+ ion as an example, we derive the average number of absorption events and determine the change in quantum efficiency due to reabsorption. Finally, we obtain the red-shift of the fluorescent wavelength and the requirement of sample dimension.
140.3320 Laser cooling 160.2540 Fluorescent and luminescent materials 300.2530 Fluorescence, laser-induced 
Chinese Optics Letters
2012, 10(3): 031401
Author Affiliations
Abstract
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062
We propose a new method to cool the Yb3+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.
激光冷却 腔增强 反斯托克斯荧光 稀土离子 160.2540 Fluorescent and luminescent materials 300.2530 Fluorescence, laser-induced 140.3320 Laser cooling 
Chinese Optics Letters
2008, 6(11): 848

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!